ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

WICHTIGE HINWEISE

Die Public Version der Protokoll Dokumentation enthält nur die wesentlichen Datagramme. Anwendungsentwickler, welche das MX10 in vollem Umfang nutzen wollen, können das erweiterte Protokoll jederzeit bei ZIMO anfordern.

LAN VERBINDUNG

Ab MX10 Version 1.18.0090 stellt das MX10 auch eine Ethernet/LAN Schnittstelle zur Kommunikation zur Verfügung. Die Version 4.00 des Schnittstellen Protokolls enthält einen ersten Entwurf, wie diese zu nutzen ist.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 1 von 42

INHALTSVERZEICHNIS	
Wichtige Hinweise	1
LAN Verbindung	1
Inhaltsverzeichnis	
Übersicht:	
Translate Tabelle für Object's und Legacy Devices:	
Genereller Aufbau der Telegramme	
Beschreibung der Bit Felder:	
Command Group's (Befehls Gruppen):	
PC Interface:	
PC USB Interface	
Aufbau / Initialisierung der Verbindung:	7
Aufbau der Datentelegramme für das ZIMO 2.x Format für Virtual COM:	7
Ethernet/UDP Interface	
Aufbau der Datentelegramme für das ZIMO 2.x Format per UDP:	8
Befehlssatz:	9
System Control Group [0x00]	
System Power [0x00.0x00]	9
Accessory Command Group [0x01]	
Accessory State [0x01.0x00]	10
Accessory Mode [0x01.0x01]	11
Accessory GPIO [0x01.0x02]	12
Accessory Port4 [0x01.0x04]	13
Accessory Data [0x01.0x05]	15
Accessory Port6 [0x01.0x06]	16
Fahrzeug Control Group [0x02]	
Fahrzeug State [0x02.0x00]	
Fahrzeug Mode [0x02.0x01]	
Fahrzeug Speed [0x02.0x02]	21
Fahrzeug Basis Funktionen Info [0x02.0x03]	21
Fahrzeug Funktion Schalten [0x02.0x04]	22
Fahrzeug Aktiv [0x02.0x10]	23
Fahrzeug Last Controller [0x02.0x12]	23
Free Group [0x03]	24
Railway Control System [0x04]	
Free Group [0x05]	
Track Cfg Group [0x06]	
Data Group [0x07]	
Item List by Index [0x07.0x01]	
Item List by Index [0x07.0x01]	
• •	
Hinweis zu Verwendung von 0x07.0x01/0x07.0x02:	
Data Name [0x07.0x10]	27

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 2 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00. Geräteseri	e ZS	

Item Image Config [0x07.0x12]	27
PC ONLY: Data Name eXtended (0x21)	27
PC ONLY: Loco GUI eXtended [0x07.0x27]	27
Info / Config Group [0x08] Modul Power Info [0x08.0x00]	
Modul Info [0x08.0x08]	29
PC ONLY:	30
Modul Power Info [0x08.0x20]	30
Network Group [0x0A] Ping [0x0A.0x00]	
Port Open [0x0A.0x06]	31
LogOff / Port Close [0x0A.0x07]	31
Interface Option [0x0A.0x0A]	32
Interface Error [0x0A.0x0F]	33
File Control (0x0E)	
Funktionelle Eigenschaften	35
Tabellen:	
Anhang: Eingetragene Markenzeichen Haftungsausschluss Glossar	
Referenz Code in C# für PC Anbindung	41
Umwandlung von 16Bit Zahlen:	41

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 3 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

ÜBERSICHT:

Das derzeit genutzte ZIMO CAN Protokoll ist mittlerweile ziemlich alt (> 10Jahre) und historisch gewachsen. Daher ist es kaum möglich, dieses Protokoll an neue Anforderungen anzupassen. Aus diesem Grunde werden die Geräte der Zs Serie (2010) parallel zum derzeitigen CAN Protokoll (ZCAN10) ein neues erweitertes Protokoll verwenden.

Das MX10 unterstützt beide Protokolle an seinen beiden CAN Buchsen.

Wobei die mit ZIMO beschrifteten CAN Buchsen Default mäßig das 'alte' Protokoll nutzen, die Fremdgeräte Buchse das neue CAN Protokoll. Dies kann aber im MX10 Menu jederzeit nach Bedarf geändert werden.

TRANSLATE TABELLE FÜR OBJECT'S UND LEGACY DEVICES:

UID	UID Word2	UID Word2		
Word1	Min.	Max	Verfügbare Adressen	
0x0000	0x0000	0x27FF	10240	DCC Loks
0x0000	0x2800	0x28FF	256	RESERVIERT
0x0000	0x2900	0x2EFF	3072	Frei [1]
0x0000	0x2F00	0x2FFF	256	RESERVIERT
0x0000	0x3000	0x31FF	512	DCC ,Basic' Zubehördecoder
0x0000	0x3200	0x39FF	2058	RESERVIERT
0x0000	0x4800	0x4FFF	2048	Frei [2]
			ZIMO Gerätege	eneration 1
0x0000	0x5000	0x503F	64	MX1
0x0000	0x5040	0x507F	64	MX8 Module
0x0000	0x5080	0x50BF	64	MX9 Module
0x0000	0x5F00	0x5FFF	256	RESERVIERT
	Database			
	0x6000	0x7FFF		RESERVIERT
			mfx Adre	essen
0x0000	0x8000	0xBFFF	16384	Mfx Loks
ZIMO CAN 2.xx Geräte (Auch von nicht ZIN				on nicht ZIMO-Herstellern)
	0xC000	0xC0FF	256	Zentralen / Booster
	0xC200	0xC2FF	256	Spezialgeräte (IF,)
	0xC300	0xFFFF	256	RESERVIERT

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 4 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

GENERELLER AUFBAU DER TELEGRAMME

ID Command Group	Counter	Data Byte 1	Data Byte 2	Data Byte 3	Data Byte 4	Data Byte 5	Data Byte 6	Data Byte 7	Data Byte 8
Befehls		[Zie	l-ID]		[We	itere Daten	ja nach Be	fehl]	
Gruppe									

Die Befehlsgruppen sind so aufgebaut, dass die jeweiligen CAN Geräte diese als Filterkriterium verwenden können und somit nicht alle Nachrichten am CAN Bus auswerten müssen.

Die Verwendung der Datenbytes ist vom jeweiligen Kommando abhängig.

Soweit sinnvoll, werden Sie in folgender Reihenfolge benutzt:

- 1. Ziel-ID Wird verwendet, wenn ein bestimmtes Gerät angesprochen werden soll (z.B.: Eine Weiche, ein Rückmelder oder eine Lok).
- 2. Restliche Datenbytes

Diese werden ja nach Befehl unterschiedlich benutzt; die genaue Verwendung ist bei den einzelnen Kommandos angeführt.

GRUNDSÄTZLICHER ID AUFBAU:

Hinweis: Es sind alle 29 ID Bits in Folge dargestellt, die 'CAN' internen Flags sind nicht dargestellt.

Bit 28	Bit 27 24	Bit 23 18	Bit 17 16	Bit 15 0
1	4	6	2	16
Flag ('1')	Group	Command	Mode	Network ID

BESCHREIBUNG DER BIT FELDER:

	ID Feld Aufteilung bei Anfragen, Befehlen, Events und Bestätigungen		
Flag	Immer '1', dient zur Unterscheidung anderer Protokolle		
Group	4 Bit für die jeweilige Kommandogruppe.		
	Gibt die jeweilige Command Group an (Sys, FeedBack, Loco,)		
Cmd	Dieses 6 Bit Feld enthält das jeweilige Command		
Mode	0b00: Req (Abfragen)		
	0b01: Cmd (Steuerbefehle, Wert setzen,)		
	0b10: Evt (Events = Ungefragte Informationen)		
	0b11: ACK (Bestätigung)		
NetworkID	Identifikationsnummer des 'Absenders'. Primär notwendig um Kollisionen am Bus zu		
	vermeiden.		

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 5 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

COMMAND GROUP'S (BEFEHLS GRUPPEN):

Alle Befehle sind in folgenden Gruppen zusammengefasst:

Gruppe	Code	Verwendung/Inhalt
System	0x00	systemkritische Aufgaben (Ein/Aus, Notstopp,)
Zubehör	0x01	Befehle zum Steuern des Zubehörs.
		Damit sind sowohl Encoder/Rückmelder wie auch Decoder gemeint.
Fahrzeuge	0x02	Befehle zum Steuern der Fahrzeuge (Mobile Decoder)
Frei	0x03	Derzeit noch unbenutzt
RCS	0x04	RESERVIERT
Config	0x05	Konfiguration von Geräten, ZIMO Command Language
TrackCfg	0x06	RESERVIERT
Data	0x07	Object-Daten Transfer
Info	0x08	Statusmeldungen, meist ungefragte Meldungen
Frei	0x09	Darf von Fremdsystemen je nach Bedarf verwendet werden.
Network	0x0A	Network Management, Modulanmeldung,

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 6 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

PC INTERFACE:

Die Verbindung zum PC kann per Virtuellen (USB-) Com-Port oder Ethernet erfolgen. In beiden Fällen wird das hier beschriebene (CAN) Protokoll verwendet. Bitte beachten:

- a) Jeder Befehl hat eine Datenlängenangabe, diese ist einzuhalten.
 Die Länge bezieht sich dabei IMMER auf die Nutzdaten, nicht auf den Header/Tail oder die Befehls Identifikation (Size, Group, Cmd, Mode, ...).
- b) Bis auf wenige Ausnahmen entspricht das Protokoll dem intern verwendeten CAN Protokoll. Daher werden typischerweise 8 Datenbytes genutzt.
- c) Um die Kommunikation mit dem PC zu optimieren, gibt es einige Befehle (Gruppe 0x10 ... 0x1F), welche bis zu 256 Datenbytes übertragen können.

PC USB INTERFACE

Zwischen dem ZIMO System USB-Interface und dem PC werden die CAN Datagramme mit folgender Methode übertragen.

AUFBAU / INITIALISIERUNG DER VERBINDUNG:

Wenn der PC eine Verbindung aufbauen will, so muss er den Aufbau durch Senden der Zeichenfolge ,Z22Z' (=0x5A, 0x32, 0x32, 0x5A) initialisieren werden. Erst nachdem das MX10 eine derartige Zeichenfolge ,verstanden' hat, antwortet es mit einem ,Ping' Telegramm.

Sollte der Ping für mehr als 500mS ausbleiben, so muss der Aufbaustring wiederholt werden. Wenn auch nach dem dritten Versuch kein Ping kommt, so ist von einem Fehler auszugehen.

AUFBAU DER DATENTELEGRAMME FÜR DAS ZIMO 2.X FORMAT FÜR VIRTUAL COM:

Für das neue CAN Protokoll werden als Telegramm Delimiter die Zeichen ,Z2' / ,2Z' verwendet. In diesem Falle wird der CAN ID Feldweise übertragen (Group, Direction, Command und NID).

Header	Size (DLC)	Group	Cmd+Mode	NID	Data 0 8	CRC16	Tail
16 Bit	8 Bit	8Bit	8Bit	16 Bit	8x8Bit	16Bit	16 Bit
0x5A32							0x325A

Grundsätzlich werden die CAN Datagramme 1:1 in dem oben definierten Frame gesendet. Da aber eine USB- (VCom) -Verbindung keine fixe Limitierung auf 8 Datenbytes hat, können auch umfangreichere Datagramme gesendet bzw. empfangen werden.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 7 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

ETHERNET/UDP INTERFACE

Das Ethernet Interface nutzt grundsätzlich die gleiche Methode zur Daten Übertragung. Der App-Layer Datentransfer erfolgt im Ethernet (W-LAN) über IP/UDP Frames. Eine PC Software (bzw. App) sendet Ihre Anfragen/Befehle über der UDP Port 14520 an das MX10, die Antworten des MX10 kommen am PC, Tab, ... am Port 14521 an.

Hinweis: Die Ports können am MX10 auch auf andere Werte gestellt werden, bitte Anleitung MX10 beachten.

Um die Verbindung zu initiieren muss die Anwendung ein Port 'Open' ([0x0A.0x06 bzw. 0x1A.0x06]) an das MX10 senden.

AUFBAU DER DATENTELEGRAMME FÜR DAS ZIMO 2.X FORMAT PER UDP:

Für die Datagramm Übertragung im Ethernet sind keine Delimiter erforderlich (,Z2' ... ,ZZ') da dies ja durch die Ethernet Framelogik abgedeckt ist. Wie auch bei der USB (VCom-) Schnittstelle werden im Ethernet die Daten 1:1 wie am CAN Bus übertragen. Allerdings gibt es einige zusätzliche Ethernet Datagramme, welche deutlich mehr Daten an das System übertragen können bzw. kann das MX10 auch deutlich mehr Daten in einem Datagramm an den PC senden. Diese LAN Spezialbefehle sind gesondert angeführt.

Size (DLC)	Unused	Group	Cmd+Mode	NID	Data 0 x
16 Bit	16 Bit	8Bit	8Bit	16 Bit	

Da ein Ethernet Frame ja typischerweise 1536 Byte umfasst, ist die Längenangabe gegenüber der VCom Schnittstelle auf 16 Bit angewachsen. Zusätzlich gibt es, ein derzeit ungenutztes, 16 Bit Feld. Dieses ist für spätere Erweiterungen vorgesehen.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 8 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

BEFEHLSSATZ:

SYSTEM CONTROL GROUP [0X00]

Die Command Group 0x00 fasst alle System 'High-Priority' Befehle zusammen und muss von allen Boostern und Fahrpulten implementiert werden.

SYSTEM POWER [0X00.0X00]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x00	0x00	0b00		3	Syster	nNID	Port					
0x00	0x00	0b01		4	SystemNID		Port	Mode				
0x00	0x00	0b1x		4	Syster	nNID	Port	Mode				

Mit Cmd=0x00/M=0b00 kann der Power Status des jeweiligen Gerätes abgefragt werden.

ACHTUNG:

Eine Abfrage unmittelbar nach einem Power Command kann zu inkonsistenten Antworten führen! Nach einem Power Mode Command wechselt das MX10 in den jeweils gewünschten Mode, dieser wird aber erst NACHDEM die internen Regelschleifen den Wechsel ausgeführt und durch Messungen verifiziert haben auch gemeldet. Dieser Vorgang kann je nach gewünschtem Wechsel mehrere 100ms dauern.

Mit Cmd=0x00/M=0b01 kann der Port Power Status des Gerätes gesetzt werden, nach 'Ausführung' der Status-Änderung wird der aktuelle Status per Cmd=0x00/M=0b11 'quittiert'.

Der jeweils gültige Status ist auch in der regelmäßigen (ca. 500ms) Power Meldung enthalten.

Das MX10 Port wird binär kodiert, Kombinationen sind erlaubt:

Port	Ausgang
0b00000001	Schiene 1
0b00000010	Schiene 2
0b0 00	Schiene 3 7 (Weitere MX10 im Booster Mode)
0b10000000	Booster Ausgang

Um ALLE Ausgänge mit einem Befehl zu schalten ist daher als Port 255 (=0xFF, =0b11111111) zu verwenden.

ACHTUNG:

Wenn mehrere Ausgänge gleichzeitig geschalten werden, so erfolgt die Bestätigung trotzdem jeweils einzeln für die "vorhandenen" Ports. Wenn also z.B.: kein weiteres MX10 im Booster Mode vorhanden ist, so gibt es KEIN ACK für diese nichtexistenten Schienen!

Anwendungen (egal ob per PC Interface oder an einem der internen Bussysteme) sollten nach einem Power-Modewechsel IMMER auf das jeweilige ACK des MX10 warten, wodurch sich im Grunde eine 'Abfrage' erübrigt.

Power Modes:

Mode	Zustand
0	Als Command ungültig.
	Wird bei Request im ACK verwendet, wenn das MX10 einen Zustandswechsel ausführt, dieser
	aber zum Zeitpunkt der Abfrage noch unklar/bzw. noch nicht stabil ist.
1	Der ,Port' wird in Normalbetrieb geschalten
2	Der ,Port' wird in Sammelstopp mit Fahrstufe ,0' geschalten (SSP0)
3	Der ,Port' wird in Emergency Sammelstopp geschalten (SSPe)
4	Der ,Port' wird ,AUS' geschalten
5	Der ,Port' wird in Service Mode geschalten

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 9 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

ACCESSORY COMMAND GROUP [0X01]

Die Command Group 0x01 fasst die Zubehörbefehle zusammen. Als Zubehör gilt dabei jegliches stationäres Gerät angefangen bei simplen Weichendecodern oder S88 Rückmelder bis hin zu komplexen Modulen mit RailCom/mfx Empfängern.

ACCESSORY STATE [0X01.0X00]

Jedes Steuersystem (Fahrpult, PC-Software) sollte den Zubehörstatus immer als erste Initialabfrage ausführen. Insbesondere für die MX8 und MX9 Module.

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x01	0x00	0b00		2	Zubeh	örNID						
0x01	0x00	0b1x		8	ZubehörNID		State	/Error	Dat	ta 1	Da	ta2

Wenn M = 0b00, DLC = 2, dann wird der Status des Zubehörs mit 'NID' angefragt.

Wenn M = 0b11, DLC = 8, dann sendet die Zentrale die Status Antwort für das jeweilige Zubehör.

Wenn ,State/Error' = 0x0000, dann befindet sich das Modul in einem ,normalen' Betriebszustand. In Data1 wird die CtrlNID von jenem Gerät gesendet, welches das jeweilige Zubehör zuletzt gesteuert hat. In Data2 wird die Anzahl der mS gesendet, welche seit dem letzten Steuerbefehl vergangen sind.

Alle ,States/Errors' ungleich 0x0000 sind Fehlercodes.

Hinweis:

Sollte ein Steuergerät für mehr als 65 Sec. (65536ms) keinen Steuerbefehl senden, so wird es zu einem nicht aktiven Steuergerät. In dem Falle sendet die Zentrale nur mehr die CtrlNID und als CtrlTick 0xFFFF. Die Status Flags sind im Anhang aufgelistet.

HINWEIS, STEIN:

Die StEin Module werden in den NID Bereich 0xD000 bis 0xDFFF gemappt.

Error	Verwendung	Data 1/2
0x0000	Kein Fehler	
0x0002	Keine Gleisspannung	
0x0003	Keine Zubehör Versorgung	
0x0004	Kein DCC Signal	
0x0005	Keine CAN Spannung	
0x0006	Keine +20V	
0x0007	Keine +5V	

	Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
ſ	Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 10 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

ACCESSORY MODE [0X01.0X01]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
Kurzform für Schienen Decoder (DCC/MMx) bzw. einfache Module												
0x01	0x01	0b00		2	Zubeh	örNID						
0x01	0x01	0b1x		4	Zubeh	örNID	Mode					
	Langform, für komplexe Module											
0x01	0x01	0b00		4	Zubeh	örNID	Type	Port				
0x01	0x01	0b1x		6/8	Zubeh	örNID	Type	Port	Мо	de1	Мо	de2

Dieses Datagramm dient der Abfrage und der Einstellung der Zubehörbetriebsart.

HINWEIS, DCC BASIC DECODER:

Für DCC bzw. MMx Decoder gilt die Kurzform des Datagrammes.

DCC Basic Decoder haben eine Zubehör NID im Bereich 0x3000 ... 0x31FF (Adresse 1 ... 512).

Die Standard DCC Zubehör Decoder kennen 2 Betriebsarten:

Mode ,0': Default Mode (bzw. Betriebsart unbekannt)
Mode ,1': Paarbetrieb (Typischerweise Weichendecoder)

Mode ,2': Einzelbetrieb (Jeder Ausgang kann getrennt geschalten werden).

Wenn das MX10 Eingeschalten wird, befinden sich alle Decoder im 'Default' Mode ('0'), typischerweise arbeiten DCC Decoder dann im Paar (Weichen) Modus.

Wenn eine bestimmte Betriebsart gewünscht ist, so muss diese zuvor durch diesen Befehl für den jeweiligen Decoder festgelegt werden. Diese Festlegung wird im MX10 gespeichert und gilt bis diese geändert wird.

HINWEIS, MX8 MODULE:

Für die MX8 Module gilt die Kurzform des Datagrammes.

MX8 Module haben eine Zubehör NID im Bereich 0x5040 ... 0x507F (Adresse 0 ... 63).

Die MX8 Module kennen folgende Betriebsarten:

Mode ,0': Default Mode (bzw. Betriebsart unbekannt)
Mode ,1': Beide Ausgangsgruppen im Paar/Paar Betrieb

HINWEIS, MX9 MODULE:

Für die MX9 Module gilt die Kurzform des Datagrammes.

MX9 Module haben eine Zubehör NID im Bereich 0x5080 ... 0x50BF (Adresse 0 ... 63).

Die MX8 Module kennen keine besonderen Betriebsarten:

Mode ,0': Default Mode (bzw. Betriebsart unbekannt)

Mode ,1': MX9 Modul vorhanden

HINWEIS, MX10 ZENTRALE:

Für das MX10 gilt die jeweilige MX10 NId.

Type	Verwendung	Mode1	Mode2
0x00			
0x10	ABA Ausgänge	0x0000 = unbekannt 0xnnn1 = Ausgang kann ,offen' sein 0xnnn2 = Ausgang kann ,GND' schalten	
		0xnnn4 = Ausgang kann ,+5V' schalten	

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 11 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

ACCESSORY GPIO [0X01.0X02]

ACHTUNG:

Diese Datagramme sind nur als 'Request' erlaubt und haben NUR den Zweck einer schnellen Informationsbeschaffung.

ECHTE Schaltvorgänge MÜSSEN über die Port Datagramme abgewickelt werden.

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x01	0x02	0b00		4	Zubeh	örNID	Ту	ре				
0x01	0x02	0b1x		8	Zubeh	örNID	Ту	ре		GPIO S	States	

Diese Datagramme dienen der effizienten Statusabfrage von simplen Ein-/Ausgängen. Es werden je Gruppe bis zu 32 Ein-/Ausgangszustände übertragen.

Durch M=0b00 kann vom Gerät ,ZubehörNID' der GPIO Bereich ,Type' abgefragt werden.

Diese werden mit M=0b11 (ACK) beantwortet. Sollte irrtümlicherweise ein Command (0b01) an die Zentrale gesendet werden, so wird die mit einem "Command Error" beantwortet.

HINWEIS, DCC BASIC DECODER:

Die DCC Basic Decoder sind in den NID Bereich 0x3000 bis 0x31FF gemappt.

Diese Datagramme werden NUR für DCC Decoder im Einzel Betrieb (Mode=2) unterstützt. Diese Betriebsart MUSS VOR Verwendung entsprechend gesetzt werden.

HINWEIS, MX8:

Die MX8 Module werden in den NID Bereich 0x5040 bis 0x507F gemappt.

Type='0': MX 8 in Betriebsart unbekannt → FEHLER

Type='1': MX 8 in Paar/Paar Mode

ACHTUNG:

Ein Request wird mit einem Acknowledge aus dem internen MX10 Speicher beantwortet!!

Es kann daher bei fehlerhaften Weichen bzw. MX8 Modulen zu falschen Antworten kommen.

Eine PC Software muss daher die Differenzen zwischen ACK und EVT berücksichtigen und entsprechende Maßnahmen setzen. Z.B.: Befehl wiederholen, Anwender Informieren, ...

Je nach verwendet MX8 und/oder Weichenantrieb sind Fehlmeldungen (Fehlerhafte ACK's) mehr oder minder wahrscheinlich. Bei Motor, Servo Antrieben stimmen die Stellungen typischerweise immer, bei "Klick-Klack' Antrieben ist dies extrem vom jeweiligen Antrieb abhängig.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 12 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

HINWEIS, MX9:

Die MX9 Module werden in den NID Bereich 0x5080 bis 0x50BF gemappt.

Type	Verwendung	Value
0x0000	Gleisabschnitt 1 16, Besetztmeldungen	,0' = Frei, ,1' = Besetzt
	Da ein MX9 über 16 Abschnitte verfügt, sind nur die ersten 16 Bits benutzt.	
0x0002	MX9 Signal Ausgänge, sofern das jeweilige MX9 mit ALA Platinen bestückt	,0' = AUS, ,1' = EIN
	ist.	

Sofern die Daten des MX9 zum Zeitpunkt der Abfrage "unklar" sind, wird die Abfrage mit einer Accessory Error Meldung (Grp=0x01, Cmd=0x00) beantwortet. Da das MX9 die Zustände der ALA nicht speichert und auch beim MX9 nicht abgefragt werden können, erhält man nur den gültigen Status von zuvor gesetzten MX9ALA Zuständen, weil nur das MX10 diese speichert.

ACCESSORY PORT4 [0X01.0X04]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x01	0x04	0b00		3	Zubeh	örNID	Port					
0x01	0x04	0b0x		4	Zubeh	örNID	Port	Value				
0x01	0x04	0b1x		4	Zubeh	örNID	Port	Value				

Wenn M = 0b00, DLC = 3, dann wird der Zustand des Ein/Ausganges (Port) vom Zubehör NID abgefragt. Durch M = 0b01, DLC = 4 wird der Ausgang des Zubehörs (NID) auf den angegeben Wert eingestellt.

Die Abfrage wird durch 0b1x beantwortet, ebenso Änderungen welche durch andere Einflüsse verursacht werden (z.B.: Manuelles Verstellen, Zeitablauf, ... oder andere events)

Jedes Zubehör (Egal ob 'Schienen' gebunden oder am Bus System) darf bis zu 128 Ein/Ausgänge haben. Jeder Ausgang darf bis zu 256 'Stellungen' haben. Wie viele dieser Möglichkeiten genutzt sind, ist vom jeweiligen Modul abhängig.

Bit 7 der Port Nummer gibt an ob der Port Wert gültig (Valid) oder nur ,virtuell' (gespeichert) ist.

HINWEIS, DCC BASIC DECODER:

DCC Basic Decoder haben eine Zubehör NID im Bereich 0x3000 ... 0x31FF (Adresse 1 ... 512).

Die Ports werden von 0 ... 7 gezählt, bei Weichendecodern sind nur die geraden Port Nummern gültig (0 = Weiche 1; 2 = Weiche 2; 4 = Weiche 3; 6 = Weiche 4;).

Ein Value von ,0' bedeutet, dass der jeweilige Ausgang (Port) abgeschaltet sein soll, ein Value von ,1', das dieser eingeschalten sein soll.

ACHTUNG:

Die tatsächliche Funktion bei DCC Decodern ist extrem vom jeweiligen Decoder und dessen Konfiguration abhängig. Im Grunde bewirkt dieser Befehl nur, dass die Zentrale einen DCC Befehl gemäß NMRA Norm 'Basic Accessory Decoder Packet Format' ans Gleis sendet.

Folgende Bitzuordnung wird dabei verwendet:

NMRA Befehl: 10AAAAAA 0 1AAACDDD (siehe NMRA Norm 9.2.1: http://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf)

A = 9 Bit Adresse des Decoders

D = Port Nummer

C = Port Zustand

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 13 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

HINWEIS, MX8:

Die bekannten MX8 Module werden entsprechend Ihrer Adressen in den Zubehör NID Bereich gemappet. Die MX8 Module belegen dabei den Bereich 0x5040 bis 0x507F (Max. 64).

Die MX8 Module haben 32 Ausgänge, welche je nach MX8 Konfiguration getrennt oder paarweise angesteuert werden können.

Im Paar Betrieb im Paar Betrieb gelten für die Ansteuerung jeweils die geraden Port Nummern (0, 2, 4, 6, ...). Die Antwort über die Schnittstelle kommt mit der gleichen Port Nummer (0, 2, 4, ...) und jeweils einem Bit für die beiden Ausgänge. Dabei bedeutet 0b00 und 0b11 eine fehlerhafte Stellung, 0b01 bzw. 0b10 die jeweils gültige Stellung.

HINWEIS, MX9:

Die MX9 Module werden in den NID Bereich 0x5080 bis 0x50BF gemappt. Die Port Nummer wird für die verschiedenen MX9 Funktionen wie folgt genutzt:

Port	Verwendung
0 15	Gleisabschnitt 1 16, Besetztmeldungen
32 63	ALA Ausgänge
128 143	HLU Geschwindigkeit. Wobei die HLU Geschwindigkeit immer für Hauptabschnitt und
	Folgeabschnitt gemeinsam gilt. Bit 0 5 → HLU Speed.

Sofern die Daten des MX9 zum Zeitpunkt der Abfrage 'unklar' sind, wird die Abfrage mit einer Accessory Error Meldung (Grp=0x01, Cmd=0x00) beantwortet.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 14 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

ACCESSORY DATA [0X01.0X05]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x01	0x05	0b00		4	ZubehörNID		Port	Type				
0x01	0x05	0b01		8	ZubehörNID		Port	Type	Data	Data	Data	Data
0x01	0x05	0b11		8	Zubeh	ZubehörNID		Type	Data	Data	Data	Data

Mit diesen Datagrammen können Objektdaten abgefragt und gesetzt werden.

In einigen Fällen sind die Objektdaten 'read only', z.B. Zugnummern können immer nur abgefragt werden bzw. werden bei Änderung als 'Event' gemeldet.

HINWEIS, MX9:

Die MX9 Module werden in den NID Bereich 0x5080 bis 0x50BF gemappt. Die Port Nummer wird fortlaufend von ,0' bis ,15' gezählt. Der ,alte' Hauptabschnitt 1 hat daher die Port Nummer ,0' und ,1', usw.

Туре	Verwendung	Data (DB5 DB8)
0x11	MX9 Fahrzeug 1, 2	Fahrzeugadresse 1 in DB5, DB6
		Fahrzeugadresse 2 in DB7, DB8
0x12	MX9 Fahrzeug 3, 4	Fahrzeugadresse 3 in DB5, DB6
		Fahrzeugadresse 4 in DB7, DB8

Hinweis zu den MX9 Zugnummern: Siehe Bedienungsanleitung MX9

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 15 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

ACCESSORY PORT6 [0X01.0X06]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x01	0x06	0b00		4	ZubehörNID		Port	Type				
0x01	0x06	0b1x		6	ZubehörNID		Port	Type	Value			

Wenn M = 0b00, DLC = 4 dann wird der Zustand des Ein/Ausganges (Port) vom Zubehör NID abgefragt. Durch M = 0b01, DLC = 6 wird der Ausgang des Zubehörs (NID) auf den angegeben Wert eingestellt. Die Abfrage wird durch 0b1x beantwortet, ebenso Änderungen welche durch andere Einflüsse verursacht werden (z.B.: Manuelles Verstellen, Zeitablauf, ...)

HINWEIS, MX10:

Die ABA Ein-/Ausgänge des MX10 sind über die NId des MX10 ansprechbar. Die Port Nummer gibt den Ein- bzw. Ausgang an.

Port	Type	Verwendung
0x00 0x07	0x20	ABA Eingänge
		Value enthält den jeweiligen Analog Wert des Eingangs
0x00 0x06	0x21	ABA Ausgänge
		Value ,0x00′ → Ausgang ,offen′,
		,0x10′ → Ausgang ,Low′, ,0x11′ → Ausgang ,High′

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 16 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

HINWEIS, STEIN:

Port	Type	Verwendung
0x00	0	Spezial Fälle
0x01	0	StEin Display, Nur COMMAND, Antwort ACK
		DB5 = Digit 1, DB6 = Digit 2.
0x00 0x07	0x01	Block, Status:
		Value = 0x0000 → Frei, keine Spannung
		Value = 0x0100 → Frei, mit Spannung
		Value = 0x1000 → Besetzt, keine Spannung
		Value = 0x1100 → Besetzt, mit Spannung
		Value = 0x1201 → Besetzt, Überlast 1
		Value = 0x1202→ Besetzt, Überlast 2
		Value = 0x1203→ Besetzt, Überlast 3
0x00 0x07	0x02	HLU , Value 0 15 → HLU Speed
		Nibbel 1:
		0x0 → AUS, 0x2 → Halt, 0x4 → UH, 0x6 → U,
		0x8 → LU, 0xA → L, 0xC → FL, 0xE → Fahrt
		Nibbel 2:
		0x00 → KEIN Richtungsbit, 0x01 → Vorwärts, 0x02 → Rückwärts
0x00 0x07	0x03	HLU Funktion
0x00 0x07	0x08	Aktueller Anschluss Strom, Value = Strom in mA
0x00 0x07	0x10	Befehle für Leistungsanschlüsse.
		Value = 0x0000 → Unbekannt
		Value = 0x0001 → AUS/OFFEN
		Value = 0x0002 → Masse
		Value = 0x0003 → +5V
		Value = 0x0004 → VCC
		Mehrfach Stellungen 1 Bis Anzahl Mode Command
0x00 0x0F	0x20	Befehle für Digitalanschlüsse
		Value = 0x0000 → Unbekannt (Z.B. Wechselspannung, Pulse,)
		Value = 0x0001 → AUS/OFFEN
		Value = 0x0002 → Masse
		Value = 0x0004 → Positiv (> 3V3)
		Mehrfach Stellungen 1 Bis Anzahl Mode Command

StEin Anzeige Logik.

Mit Port 0x01, Type 0x00 können die beiden Anzeige Digits vom StEin für 'externe' Anzeigen verwendet werden. Jede Digitbyte ist dazu in 3 High Bits und 5 Low Bits unterteilt.

Die 5 Low Bits ergeben das gewünschte Zeichen: $0 = 0, 1 = 1, \dots 9 = 9, 10 = A, 11 = b, 12 = C, 13 = d, 14 = E, 15 = F, 16 = H, 17 = h, 18 = I, 19 = L, 20 = h, 21 = P, 22 = S, 23 = U, 24 = u, 25 = L, 26 = L, 27 = L$

Wenn Bit ,7' bei einem der beiden Digit Bytes gesetzt ist, so wird die ,remote' Anzeigefunktion beendet (Gilt immer für beide Digits!!!), wenn Bit ,6' gesetzt ist, blinkt das jeweilige Digit, Bit ,5' zeigt den Dezimalpunkt an.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 17 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

FAHRZEUG CONTROL GROUP [0X02]

Die Command Group 0x02 fasst alle Fahrzeugsteuerbefehle zusammen und muss von allen Boostern und Fahrpulten implementiert werden. Diese Gruppe enthält jedoch KEINE Programmierbefehle.

FAHRZEUG STATE [0X02.0X00]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x02	0x00	0b00		2	FahrzeugNID							
0x02	0x00	0b11		8	Fahrze	ugNID	State	Flags	Ctrl	NID	Ctrl	Tick

Mit diesen Datagrammen kann ein Gerät (Fahrpult, PC-Software, ...) den aktuellen Status eines Fahrzeuges abfragen. Dies ist insbesondere sinnvoll um Steuer-Konflikte zu erkennen.

Wenn M = 0b00, DLC = 2, dann wird der Status des Fahrzeuges mit 'NID' angefragt.

Wenn M = 0b11, DLC = 8, dann sendet die Zentrale die Status Antwort für das jeweilige Fahrzeug. In der Antwort gibt die CtrlNID an welches Gerät das jeweilige Fahrzeug zuletzt gesteuert hat, der Wert CtrlTick enthält dabei die Anzahl der vergangenen ms seit dem letzten Steuerbefehl des CtrlNID Gerätes.

Hinweis:

Sollte ein Steuergerät für mehr als 65 Sec. (65536ms) keinen Steuerbefehl senden, so wird es zu einem nicht aktiven Steuergerät. In dem Falle sendet die Zentrale nur mehr die CtrlNID und als CtrlTick 0xFFFF. Die Status Flags sind im Anhang aufgelistet.

Hinweis:

Bei einem dem MX10 unbekannten Fahrzeug kommt keine Meldung.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 18 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

FAHRZEUG MODE [0X02.0X01]

Diese Datagramme dienen der Abfrage bzw. dem Einstellen der Fahrzeug-Betriebsart. Damit das MX10 ein Fahrzeug steuern kann, müssen Ihm die Betriebsparameter bekannt sein.

Eine PC-Software kann/muss die Fahrzeug Betriebs-Parameter festlegen!!!

Dazu kann sie entweder diese zuerst abfragen und nur 'unbekannte' Parameter ergänzen, oder schlicht und einfach 'Ihre' Parameter rücksichtslos als Command senden.

In jedem Falle arbeitet das MX10 mit den zuletzt definierten (empfangenen) Fahrzeugparametern und speichert diese bei Betriebsende.

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x02	0x01	0b00		2	FahrzeugNID							
0x02	0x01	0b01		5	FahrzeugNID		M1	M2	M3			
0x02	0x01	0b11		5	Fahrze	FahrzeugNID		M2	M3			

Durch Mode=0b00 kann das Steuergerät die aktuellen Betriebsparameter für ein Fahrzeug abfragen. Bei einer Antwort mit M1=0x00 und M2=0x00 ist dem MX10 das jeweilige Fahrzeug unbekannt.

MODE 1 FLAGS

Bit	Info Command							
03	Speed Steps:							
	0: 'unbekannt'							
	1: 14FS							
	2: 27FS							
	3: 28FS							
	4: 128FS							
	5: 1024FS							
	6 - 7: nicht definiert							
47	Schienen Format:							
	0: unbekannt							
	1: DCC							
	2: MM2							
	3: nicht definiert							
	4:mfx							

MODE 2 FLAGS

Bit	Info Command
07	Max. Anzahl an Funktionen: Keine (0) bis derzeit max. 32

MODE 3 FLAGS

Bit	Info Command
0	Puls Fx (Funktionen werden also Pulskette gesendet, LGB)
1	Analog Fx (Analog Funktionen)
2 3	Speed Limit ZIMO / Speed Limit NMRA
	0b00 = Kein Speed Limit aussenden,
	0b01 = NMRA Speed Limit senden
	0b10 = ZIMO Speed Limit senden
4	nicht definiert
5	nicht definiert
6	nicht definiert
7	nicht definiert

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 19 von 42

ZCAN20	PUBLIC	Vers. : 4.03
7IMO CAN Protokoll 2.00. Geräteseri	e 7S	

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 20 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

FAHRZEUG SPEED [0X02.0X02]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x02	0x02	0b00		2	FahrzeugNId							
0x02	0x02	0b01		6	FahrzeugNId		Spe	eed	0	0		
0x02	0x02	0b11		6	FahrzeugNId		Spe	eed	0	0		

Wenn M = 0b00, DLC = 2, dann wird die Geschwindigkeit der Lok mit 'NID' angefragt.

Wenn M = 0b01, DLC = 6, dann wird die Geschwindigkeit der Lok mit 'NID' auf den übergeben Wert gesetzt.

Wenn M = 0b11, DLC = 6, dann Antwortet die Lok mit 'NID' auf die Abfrage nach Ihrer Geschwindigkeit.

Für DCC Fahrzeuge entspricht FahrzeugNId schlicht der Fahrzeug DCC Adresse.

Für die Fahrzeug Fahrstufe sind einheitlich Werte von 0 ... 1023 zu verwenden, unabhängig von den jeweiligen Fahrzeug Dekoder Fahrstufen!! Die Umrechnung auf die tatsächliche Dekoder (Schienen Format) Fahrstufe erfolgt im MX10.

Beispiel:

Dekoder nutzt 128FS, gesendet (Cmd) wird 568, somit bekommt der Dekoder die Fahrstufe 71 → Faktor 8. Dekoder nutzt 28FS, gesendet (Cmd) wird 788, somit bekommt der Dekoder die Fahrstufe 21 (Genau würde dies 21.888 ergeben, das MX10 rundet IMMER ab) → Faktor 36.

In den obersten 6 Bit des 16 Bit Speed Wertes sind folgende Flags kodiert:

Bit	Beschreibung	Gültige Werte
0 09	In diesen Bits ist die Geschwindigkeit auf 1024 skaliert zu senden, bzw.	0 1023
	empfangen	
10	Richtungsbit ans System	
	,0′ → Vorwärts, ,1′ → Rückwärts	
11	Richtungsbit vom System	
	,0′ → Vorwärts, ,1′ → Rückwärts	
12 14	Derzeit frei	0
	Müssen ,ignoriert' werden	
15	Emergency Stopp für dieses Fahrzeug	0/1

FAHRZEUG BASIS FUNKTIONEN INFO [0X02.0X03]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x02	0x03	0b00		2	Fahrze	ugNID						
0x02	0x03	0b11		6	FahrzeugNID		Sta	status für Fx0 bis Fx31				

Wenn M = 0b00, DLC = 2, dann wird der Funktionsstatus der Lok mit 'NID' abgefragt Wenn M = 0b11, DLC = 6, dann antwortet die Lok auf eine Statusabfrage.

Dieser Befehl dient, ähnlich dem Accessory Datagrammen 'GPIO' nur einer schnellen Informationsbeschaffung. Die eigentlichen Schaltbefehle und Bestätigungen erfolgen über die 'Fahrzeug Funktion schalten' Datagramme.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 21 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

FAHRZEUG FUNKTION SCHALTEN [0X02.0X04]

Grp	Cmd	D	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x02	0x04	0b00		4	Fahrze	eugNID	Fx	Nr				
0x02	0x04	0b01		6	FahrzeugNID		Fx	Nr	Fx'	Val		
0x02	0x04	0b11		6	FahrzeugNID		Fx	Nr FxVal				

Wenn M = 0b00, DLC = 4, dann wird die Funktion der Lok mit 'NID' und der Funktion 'Nr.' abgefragt.

Wenn M = 0b01, DLC = 6, dann wird die Lokfunktion 'FxNr' der Lok 'NID' auf den angegebenen Wert gesetzt.

Wenn M = 0b11, DLC = 6, dann antwortet die Lok auf eine Funktionswert Abfrage.

Wobei FxVal = 0x00 immer 'Aus' bedeutet, FxVal ungleich 0x00 sind vom jeweiligen Lok-Decoder abhängig, für 'normale' DCC und MM Lok Decoder werden diese als Funktion 'Ein' interpretiert.

Die 'FxNr' ist für diesen Befehl in mehrere Bereiche aufgeteilt:

Von FxNr	Bis FxNr	Beschreibung	Gültige Werte
0	31	Die bekannten 'normalen' Funktionen, die maximal Fx Nummer ist dabei vom jeweiligen Format abhängig.	Ein/Aus
254	254	Rangierfunktion	0 255
255	255	MAN Funktion Ein/Aus	0/1

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 22 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

FAHRZEUG AKTIV [0X02.0X10]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x02	0x10	0b00		2	Ziel-	-NID						
0x02	0x10	0b01		4	Ziel-	-NID	Mode					

Jedes Steuergerät (Fahrpult/Computer) sollte diesen Befehl für 'aktive' Fahrzeug etwa alle 500 ... 1000ms aussenden. Dieses Kommando bewirkt, dass dieses Fahrzeug zumindest in Priorität 1 im MX10 verbleibt.

Wenn ein Steuergerät ein Fahrzeug aktiv steuern will, so muss es zuerst abfragen, ob das Fahrzeug nicht schon von einem anderen Gerät gesteuert wird. Wenn die Abfrage NICHT innerhalb von 500mS beantwortet wird, so wird das Fahrzeug von keinem anderen Gerät gesteuert und kann aktiviert werden.

Wenn die Abfrage beantwortet wird (Mode = 1), so ist das Fahrzeug auf einem anderen Gerät aktiv. Dies ist an sich eine reine Absicherung, da jedes Steuergerät sowieso periodisch für die von Ihm gesteuerten Fahrzeuge eine 'Aktiv' Meldungen senden muss.

Wenn ein Steuergerät ein 'aktives' Fahrzeug übernehmen will, so muss es das 'Übernahme' Kommando senden (Mode = 0x10).

ACHTUNG!!! UNTERSCHEIDUNG STELLWERK/FAHRPULT

Dieser Befehl ist die WESENTLICHSTE Unterscheidung zwischen einer Stellwerks- und einer Fahrpult-Anwendung (egal ob am PC oder Tab, ...).

Eine Fahrpultanwendung MUSS die Übernahme/Übergabe Prozedur implementieren, da sonst andere Fahrpulte kommentarlos gegensteuern können.

Eine Stellwerksoftware muss Fahrzeuge nicht zwangsweise 'aktiv' melden, sofern sie mit manuellen Eingriffen umgehen kann.

Unter Anwendung der Übergabe/Übernahme Technik, kann ein Fahrpult immer nur jenes Fahrzeug steuern, für welches es den 'aktiv Focus' hat.

Ohne der Übergabe/Übernahme Logik, inkl. der aktiv Meldung, kann jederzeit ein anderes Steuergerät Fahrstufen und/oder Funktionen ändern. Es ist dann Aufgabe der jeweiligen Software mit solchen Änderungen umzugehen. Abweichungen zwischen eigenen "SOLL" Zustand und gemeldeten "IST" Zustand müssen entsprechend abgebildet werden bzw. im weiteren Ablauf der Software berücksichtigt werden.

FAHRZEUG LAST CONTROLLER [0X02.0X12]

Reserviert.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 23 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

FREE GROUP [0X03]

Derzeit frei für Protokoll Erweiterungen

RAILWAY CONTROL SYSTEM [0X04]

Die Datagramme dieser Gruppe dienen der Kommunikation mit Stellwerken (Railway Control System, in weiterer Folge mit RCS abgekürzt).

Sie dienen in erster Linie einem verbesserten Zusammenspiel zwischen dem ZIMO System (MX10, MX32/FU) und einer PC Stellwerks Software.

Diese Befehle stehen NICHT zur allgemeinen Verwendung zur Verfügung.

FREE GROUP [0X05]

Diese Gruppe ist für Fremdanwendungen frei.

TRACK CFG GROUP [0X06]

Diese Gruppe ist für das Programmieren von schienengebundenen Decodern vorbereitet.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 24 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

DATA GROUP [0X07]

GROUP COUNT [0X07.0X00]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x07	0x00	0b00		4	Src	NID	Gro	oup				
0x07	0x00	0b11		4	Gro	oup	Co	unt				

Durch M = 0b00 kann ein Gerät abfragen ob das MX10 eine bestimmte Geräte Gruppe kennt. Das MX10 antwortet (M = 0b11) mit Gruppe und der ihm bekannten Anzahl an Geräten in der jeweiligen Gruppe.

Anmerkung: ScrNID ist die Sourcequellen-NID.

Group Count für MX8, MX9 Module liefert bei unbekannter Anzahl (z.B. weil die Anfrage zu früh, Autoscan off, Rückmeldefehler liegt vor,...) das Ergebnis OxFFFF.

GROUP CODES:

Group	
0x0000	Fahrzeuge
0x3000	Zubehör, DCC ,simpel'
0x5040	MX8 Module
0x5080	MX9 Module

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 25 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

ITEM LIST BY INDEX [0X07.0X01]

(3rp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0:	x07	0x02	0b00		6	Src	NID	Grou	pNID	Inc	dex		
0:	x07	0x02	0b11		6	Inc	dex	N	ID	Last	Tick		

Durch M = 0b00 kann ein Gerät die Objekt Liste über den Objekt Index im MX10 abfragen.

Das MX10 antwortet (M = 0b11) mit dem Objekt Index und der NID des Objektes. Dadurch kann ein Gerät eine Liste der dem MX10 bekannten Objekte aufbauen.

Fall 1: Gerät vorhanden

Wenn unter dem abgefragten Index ein Objekt im MX10 vorhanden ist, so liefert es in der Antwort den Index, die NId des Gerätes und die Anzahl der mS seit der letzten Kommunikation mit dem Gerät.

Fall 2: Gerät nicht vorhanden/unbekannt

Wenn das MX10 unter dem angegeben Index kein Gerät kennt, so liefert es in der Antwort den abgefragten Index, als NId=0xFFFF und ebenso als letzten Kommunikation-Tick 0xFFFF.

Ebenso, wenn der Index außerhalb der 'Objektgruppe' liegt (z.B.: Bei MX8/MX9 sind nur Indexe von 0 ... 63) erlaubt), oder die 'Objektgruppe' als solches unbekannt ist.

ITEM LIST BY NID [0X07.0X02]

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x07	0x02	0b00		4	Src	NID	N	Id				
0x07	0x02	0b11		6	N	Id	Inc	dex	Last	Tick		

Durch M = 0b00 kann ein Gerät jene NId abfragen, welche nach der angegeben NId gespeichert ist.

Dieser Befehl ist insbesondere für Zubehör Module/Decoder hilfreich.

Die Antwort (M = 0b11) enthält die 'nächste' NId, den jeweiligen Index und sofern vorhanden den letzten 'Kommunikationstick'.

Ähnlich wie bei ,Item List by Index' [0x07.0x01] gibt es auch hier 2 Antwortmöglichkeiten:

- Das MX10 findet ein "nächstes" Gerät nach der angegeben NId in der gleichen Objektgruppe. In dem Falle liefert es die gefundene NId, den Index und die letzten Kommunikationstick.
- 2. Dem MX10 sind keine weiteren Geräte in der Objektgruppe bekannt, die NId verweist auf eine unbekannte Objektgruppe, ... In dem Falle antwortet das MX10 mit NId=0xFFFF, Index=0xFFFF und LastTick=0xFFFF.

HINWEIS ZU VERWENDUNG VON 0X07.0X01/0X07.0X02:

Beide Befehle erfüllen sehr ähnliche Aufgaben und liefern auch ähnliche Antworten.

Mit ,Item List by Index' wird jedoch ein ,direkter' Speicher Zugriff ausgeführt. An der jeweiligen Speicherstelle können sich Daten (ein Objekt) befinden oder auch nicht. Wenn eine Abfrage auf Index z.B.: Index 10 ,keine Daten' liefert, so können bei Index 11 durchaus noch welche vorhanden sein.

Mit ,Item List by NId', liefert das MX10 solange ,positive' Antworten, wie es weitere Daten findet. ,Leere' Speicherplätze werden dabei übersprungen.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 26 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

DATA NAME [0X07.0X10]

Reserviert.

ITEM IMAGE CONFIG [0X07.0X12]

Reserviert.

PC ONLY: DATA NAME EXTENDED (0X21)

Dieser Befehl steht nur am PC Interface zur Verfügung (USB/LAN).

Damit kann eine App Texte mit bis zu 192 Zeichen in einem Befehl übertragen.

Etliche Einträge sind aber mit 32 Zeichen limitiert, bzw. gibt es in der GUI-Darstellung Limitierungen.

Hinweis: Namen und andere Zeichenketten sind 0x00 Terminiert zu senden!

Grp	Cmd	M	ID	DLC	DB	DB	DB	DB	DB	DB
					12	3 4	58	9 12	11 14	15 204
0x07	0x21	0b00		14	SrcID	NID	SubID	Value 1	Value 2	
0x07	0x21	0b01		12	NID	SubID	Value 1	Value 2	Z1 :	Z[x]
0x07	0x21	0b11		12	NID	SubID	Value 1	Value 2	Z1 :	Z[x]

 $\label{eq:decomposition} \mbox{Die ,NID' gibt an f\"ur welches Ger\"at der Text gilt.}$

Wenn ,NID' z.B.: die NID eines Fahrzeuges ist, so werden die Texte mit diesem Fahrzeug verknüpft.

Auch alle anderen Texte können mit diesem Befehl übertragen werden.

NID	SubID	Value 1	Value 2	Verwendung	Max. Länge
Fahrzeug	0	0	0	Fahrzeugname	32 Zeichen

PC ONLY: LOCO GUI EXTENDED [0X07.0X27]

Reserviert.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 27 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

INFO / CONFIG GROUP [0X08]

In der Info Group sind diverse Informationsabfragen und -meldungen zusammengefasst.

Grp	Cmd	М	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
80x0	0x00	0b00		3	Ziel-	-NID	Port					
80x0	0x00	0b10		8	Port	0	Sta	tus	Trac	ck U	Tra	ck I
80x0	0x00	0b11		8	Port	0	Sta	tus	Trac	ck U	Tra	ck I

Port:

Bit	
0 3	Port Nummer: 0=Schiene 1, 1=Schiene 2, 2=Booster
4 7	Frei

Status:

Bit	
0 3	,0' = Run,
	,1' = SSP,
	,2' = Service Mode
	,3′ = frei
	,4' = Decoder Update
	,5' = Sound Laden
4 7	,0' = Run,
	,1' = Unterspannung
	,2' = Überstrom
	,4' = Netzteilspannung
8 9	Frei
10	Zugnummern Impulse
11	RailCom®
12	mfx®

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 28 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

MODU	JL INFO	[0X08.	0X08]									
Grp	Cmd	M	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
80x0	0x08	0b00		4	N	ID	Ту	ре				
80x0	0x08	0b01		8	Ν	ID	Ту	ре		In	fo	
0x08	0x08	0b11	·	6	Ту	ре		In	fo	•		

Über die Modul Info Datagramme können diverse Informationen abgefragt werden. ACHTUNG:

Die meisten Informationen sind 'Read Only' Informationen, können also NICHT per Command geändert werden. In der nachfolgenden Tabelle ist angegeben, welche Informationen Read Only/Write sind und das jeweilige Format.

INFO TYPES

Туре	Verwendung	R/W	Format	
1	Hardware Version	RO		
2	Software Version	RO		
3	Software Build Date	RO	Info Byte 1 = Tag	
			Info Byte 2 = Monat	
			Info Byte 3/4 = Jahr	
4	Software Build Time	RO	Info Byte 1 = ,0'	
			Info Byte 2 = Sekunde	
			Info Byte 3 = Minute	
			Info Byte 4 = Stunde	

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 29 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

PC ONLY:

MODUL POWER INFO [0X08.0X20]

Reserviert.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 30 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

NETWORK GROUP [0X0A]

In der Network Group sind all jene Telegramme zusammengefasst, welche sich mit dem Networkmanagement befassen.

PING	[OXOA.	00001
1 1140	[0 / (0 / (.	0,100

Grp	Cmd	М	NID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x0A	0x00	0b10		8	Master-UID				Ту	ре	Sess	sion

Die primäre Zentrale versendet diesen Befehl etwa alle 500ms, zumindest jedoch jede Sekunde.

Master-UID: UID der Zentrale

Type: Art der Zentrale, siehe Tabelle

Session: Session Nummer

Anhand dieses Befehls sollen die angeschlossenen Module erkennen, dass sie immer noch mit der Ihnen bekannten Zentrale verbunden sind. Dabei muss auch die Session Nummer geprüft werden. Diese Session Nummer wird von der Zentrale bei jeder UID Änderung inkrementiert. Dies erfolgt z.B.: wenn die Zentrale ein neues Objekt in Ihre Objektliste aufnimmt oder wenn ein vorhandenes aus dieser Liste gelöscht wird. Erkennt ein Modul, dass es mit einer 'unbekannten' Zentrale verbunden ist, so muss es einen Anmeldevorgang initiieren.

PORT OPEN [0X0A.0X06]

Grp	Cmd	M	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x0A	0x06	0b01		0								

Mit diesem Datagramm kann ein Gerät die Ethernet Schnittstelle des MX10 'öffnen'. Als Antwort bekommt das Gerät ein 'Ping' vom MX10.

LOGOFF / PORT CLOSE [0X0A.0X07]

Grp	Cmd	M	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
A0x0	0x07	0b01		2	N	ID						

Durch dieses Telegramm kann sich ein Gerät von einer Zentrale abmelden.

Sofern dies eine PC Software sendet, wird dadurch auch automatisch das jeweilige Kommunikationssport (USB oder Ethernet) geschlossen. Das jeweilige Gerät muss zur Wiederaufnahme der Verbindung wieder die jeweiligen Initialschritte abarbeiten.

Als (Ziel-) NID ist dabei die NID jenes Gerätes anzugeben, von welchem sich der Schnittstellen Benutzer (PC Software) abmelden will.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 31 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

INTERFACE OPTION [0X0A.0X0A]

Grp	Cmd	M	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x0A	0x0A	0b00		4	NID		Ту	pe				
0x0A	0x0A	0b01		8	N	NID Type		Value				
0x0A	0x0A	0b11		8	NID		Туре		Value			

Durch diese Datagramme kann eine PC Software diverse Kommunikationsoptionen abfragen bzw. einstellen.

INFO VALUES FÜR TYPE 0X0001

Туре	Value	Verwendung
0x0001	0x0000	ZIMO Intern
	0x0010	Kennung für ESTWGJ
	0x0020	Kennung für STP
	0x0021	Kennung für Pfusch
	0x0030	Kennung für TrainController
	0x0031	Kennung für TrainProgrammer
	0x0040	RailManager

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 32 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri		

INTERFACE ERROR [0X0A.0X0F]

Grp	Cmd	M	ID	DLC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
0x0A	0x0F	0b11		8	N	ID	Grp	Cmd		Val	lue	

Dieses Datagramm wird vom MX10 gesendet, wenn ein Befehl fehlerhafte Parameter enthält oder aus anderen Gründen nicht ausführbar ist.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 33 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

FILE CONTROL (0X0E)

Reserviert.

FILE TRANSFER (OXOF)

Reserviert.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 34 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

FUNKTIONELLE EIGENSCHAFTEN

${\tt ABLAUF\;FAHRZEUG\;,AKTIVIEREN'}$

Mit dem im Folgenden beschriebenen Ablauf aktiviert ein Fahrpult bzw. sonstiges Steuergerät (z.B.: Computer) ein Fahrzeug, um dieses zu steuern.

Schritt	
1	Abfrage des Fahrzeug Status
2	Antwort abwarten, max. 500ms.
	Kommt in dieser Zeit keine Antwort, so kann das MX10 das gewünschte Fahrzeug nicht aktivieren.
	Ein Steuern des Fahrzeuges ist somit unmöglich.
3	Abfrage des Fahrzeug Modes bzw. Setzen des Fahrzeug Modes, insbesondere für neue Fahrzeuge
4	Antwort abwarten, max. 500ms.
	Normalerweise kommt die Antwort in weniger als 10ms. Sollte die Antwort nicht innerhalb von
	500ms kommen, so liegt ein Fehler vor.
5a	Ab hier kann das Fahrzeug in vollem Umfang gesteuert werden.
	Sämtliche Fahr, Schalt und POM Befehle können genutzt werden.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 35 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

ABLAUF MX8, MX9

Das MX10 verwaltet für diese Module eigene Objekte. Grundsätzlich werden Abfragen von diesem Objektspeicher beantwortet bzw. Befehle in diesen Objektspeicher eingetragen.

Jedes dieser Objekte bildet gleichzeitig eine autonom laufende Task-Engine. Diese sendet bei Daten- bzw. Zustandsänderungen (durch Befehle) die passenden Befehle an die Module (MX8/MX9). Umgekehrt werden alle Informationen von diesen Modulen ebenfalls im jeweiligen Objektspeicher eingetragen und danach an den PC weitergeleitet.

Diese Logik hat sowohl Vorteile als auch Nachteile:

Vorteile:

- Im laufenden Betrieb kann die volle Bandbreite des PC Interfaces genutzt werden.
- Die fortlaufende Überwachung der Module wird vom MX10 übernommen.
- Einheitliche Kommandologik, egal ob es sich um ein MX8, MX9 oder später StEin handelt.

Nachteile:

- Unmittelbar nach dem Hochfahren des MX10 sind alle Daten ,invalid'

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 36 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

TABELLEN:

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 37 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

ANHANG:

EINGETRAGENE MARKENZEICHEN

mfx® Gebr. Märklin & Cie. GmbH

Motorola Inc., Tempe-Phoenix, USA

ZIMO ZIMO Elektronik GmbH HLU ZIMO Elektronik GmbH

DCC NMRA

RailCom® Lenz Elektronik GmbH

LocoNet Digitrax Inc.
Android Google Inc.
iPad, iPhone Apple Inc.
iOS Apple Inc.
App Store Apple Inc.
Google Play Google Inc.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 38 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

HAFTUNGSAUSSCHLUSS

Information von der Firma ZIMO Elektronik GmbH:

Die Firma ZIMO Elektronik GmbH erklärt ausdrücklich, in keinem Fall für den Inhalt in diesem Dokument oder für in diesem Dokument angegebene weiterführende Informationen rechtlich haftbar zu sein. Die Rechtsverantwortung liegt ausschließlich beim Verwender der angegebenen Daten oder beim Herausgeber der jeweiligen weiterführenden Information.

Für sämtliche Schäden die durch die Verwendung der angegebenen Informationen oder durch die Nicht-Verwendung der angegebenen Informationen entstehen übernimmt ZIMO Elektronik GmbH ausdrücklich keinerlei Haftung.

Die Firma ZIMO Elektronik GmbH übernimmt keinerlei Gewähr für die Aktualität, Korrektheit, Vollständigkeit oder Qualität der bereitgestellten Informationen.

Haftungsansprüche, welche sich auf Schäden materieller, immaterieller oder ideeller Art beziehen, die durch die Nutzung oder Nichtnutzung der dargebotenen Informationen verursacht wurden, sind grundsätzlich ausgeschlossen.

Die Firma ZIMO Elektronik GmbH behält es sich vor, die bereit gestellten Informationen ohne gesonderte Ankündigung zu verändern, zu ergänzen oder zu löschen.

Alle innerhalb des Dokuments genannten und gegebenenfalls durch Dritte geschützten Marken- und Warenzeichen unterliegen uneingeschränkt den Bestimmungen des jeweils gültigen Kennzeichenrechts und den Besitzrechten der jeweiligen eingetragenen Eigentümer.

Sollten Teile oder einzelne Formulierungen des Haftungsausschlusses der geltenden Rechtslage nicht, nicht mehr oder nicht vollständig entsprechen, bleiben die übrigen Teile des Haftungsausschlusses in ihrem Inhalt und ihrer Gültigkeit davon unberührt.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 39 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteserie ZS		

GLOSSAR

Begriff	Erklärung
UID	Weltweit eindeutig 32 Bit Nummer (Unique Identifier).
	Diese wird typischerweise während des Anmeldeprozesses verwendet.
NID	Network ID, 16 Bit Nummer welche im laufenden Betrieb zur Adressierung der Module,
	Fahrzeuge, Decoder, verwendet wird.
TSE	Track Signal Engine. Jener Programmteil, welcher die logischen Befehle in die jeweiligen
	Schienen Befehle (DCC, MM2, mfx,) umsetzt. Ebenso ist dieser Programmteil für die
	Synchronisierung des Schienen Empfangs (RailCom, ZACK, mfx) zuständig.
OBJECT	Der Begriff Objekt bezeichnet eine allgemeine Datenstruktur, welche Daten unterschiedlicher
	Module, Fahrzeuge, Decoder, Enkoder, etc. enthält.
	Diese Struktur kann dabei in abstrakter Form oder als konkreter Eintrag in einer Datenbank verwendet werden.
OBJDB	Die Objekt Datenbank beruht auf OBJECT's (siehe oben). Die konkreten Werte der Objekte
	werden in der OBJDB koordiniert verwaltet und je nach Bedarf permanent gespeichert.

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 40 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

REFERENZ CODE IN C# FÜR PC ANBINDUNG

Im Folgenden befinden sich einige Beispiele und Hilfsfunktionen für die PC Kommunikation:

UMWANDLUNG VON 16BIT ZAHLEN:

Da das interne Protokoll im Little Endian Format arbeitet, PC's jedoch das Big Endian Format verwenden ist eine Umwandlung zwischen diesen Formaten erforderlich.

Um eine Zahl aus einem Byte Stream (typischerweise Empfangsdaten vom System) in eine 16 Bit Zahl für den PC umzuwandeln ist folgende Funktion sinnvoll:

Die Funktion geht davon aus, das die Empfangsdaten in einem Byte Buffer mit Namen iData[..] vorliegen. Durch _iByte wird angegeben ab welchem Byte die Zahl in diesem Bytearray liegt. Die jeweils 'umgewandelte' Zahl wird dem Aufrufer zurückgegeben.

```
public UInt16 DataI16Get(int _iByte)
{
     UInt16 iTemp;
     iTemp = (UInt16)((iData[_iByte + 0] >> 0) & 0x00FF);
     iTemp |= (UInt16)((iData[_iByte + 1] << 8) & 0xFF00);
     return (iTemp);
}</pre>
```

Natürlich ist auch eine Umkehrung zum Senden von 16Bit Zahlen erforderlich, dies kann mit folgender Funktion geschehen:

Als Parameter sind _iByte und _iData zu übergeben, dabei bestimmt _iByte ab welcher Position die Zahl in den Byte Stream (Buffer) einzutragen sind. _iData ist dabei die Zahl, welche entsprechend umzuwandeln ist.

```
public void DataI16Set(int _iByte, UInt16 _iData)
{
    iData[_iByte + 0] = (byte)((_iData >> 0) & 0xFF);
    iData[_iByte + 1] = (byte)((_iData >> 8) & 0xFF);
}
```

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 41 von 42

ZCAN20	PUBLIC	Vers. : 4.03
ZIMO CAN Protokoll 2.00, Geräteseri	e ZS	

FAHRZEUG STEUERN, ,SIMPLE DRIVE':

Die "Simple Drive" Methode ist wie der Name schon sagt, die einfachste Art Fahrzeuge per PC zu steuern. Bei dieser Methode sendet der PC schlicht Fahr- und Funktionsbefehle ohne weitere Rücksichtnahme auf das System.

In diesem Falle entscheidet das MX10 anhand der Befehlsdaten in welcher Priorität die Befehle an die Schiene zu senden sind und 'exekutiert' den Befehl.

System intern (also MX32) werden diese Befehle gespiegelt und kurzfristig angezeigt. Da die PC Software auf diese Art und Weise jedoch das Fahrzeug NICHT übernimmt, gibt es auch keinen Übernahme Dialog oder sonstige Zusammenarbeit zwischen System (MX32 + MX10) und der PC Software.

FAHRZEUG STEUERN, ,FAHRPULT STYLE':

Bei dieser Methode verhält sich eine PC Software wie ein 'reales' Fahrpult.

In diesem Falle muss sich durch den "Aktiv" Befehl Fahrzeuge übernehmen, die Übergabe Logik implementieren und auch etwa alle 500mS die Fahrzeug aktiv Meldung senden.

Natürlich kann eine PC Software dies für mehrere Fahrzeug gleichzeitig machen, bzw. einen Teil der Fahrzeuge im "Fahrpult Style" steuern und andere Fahrzeuge mit einer der beiden anderen Methoden.

ACHTUNG:

Wenn eine PC Software mehrere Steuermethoden anwendet, so muss sie selber für einen sauberen Übergang zwischen diesen Methoden sorgen.

FAHRZEUG STEUERN, ,VOLLWERTIGES STELLWERK':

Zimo CAN Protokoll 4.00 Public.doc	Erstellt von Mike F. Schwarzer	
Erstelldatum 15.03.2016 19:18:00	07.07.2016 15:42:45	Seite 42 von 42